ISSN 1600-5368

Diethyl [2,2,2-trifluoro-1-phenylsulfonylamino-1-(trifluoromethyl)ethyl]phosphonate

Sanjeeva J. Wijeyesakere,^a Faik A. Nasser,^a Jeff W. Kampf,^b Alexey Y. Aksinenko,^c Vladimir B. Sokolov,^c Vladimir V. Malygin,^c‡ Galina F. Makhaeva^c and Rudy J. Richardson^a*

^aUniversity of Michigan, Toxicology Program, 1420 Washington Heights, Ann Arbor, MI 48109-2029, USA, ^bUniversity of Michigan, Department of Chemistry, 930 N. University, Ann Arbor, MI 48109-1055, USA, and ^cInstitute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russian Federation

Correspondence e-mail: rjrich@umich.edu

Received 10 June 2008; accepted 1 July 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.083; data-to-parameter ratio = 18.6.

The title compound, $C_{13}H_{16}F_6NO_5PS$, is of interest with respect to inhibition of serine hydrolases. Its structure contains a 1.8797 (13) Å P–C bond and two intermolecular N–H···O=P hydrogen bonds, resulting in centrosymmetric dimers. An intramolecular N–H···O=P hydrogen bond is also present.

Related literature

For related literature, see: Chekhlov *et al.* (1995); Makhaeva *et al.* (2005); Adams *et al.* (2008); Chen *et al.* (2008); Guo *et al.* (2008); Kachkovskyi & Kolodiazhnyi (2007); Liu *et al.* (1995).

Experimental

Crystal data $C_{13}H_{16}F_6NO_5PS$ $M_r = 443.3$

‡ Deceased.

Monoclinic, $P2_1/n$ *a* = 11.6913 (15) Å b = 10.1375 (13) Å c = 15.5955 (19) Å $\beta = 93.264 (2)^{\circ}$ $V = 1845.4 (4) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector	20001 measured reflections
diffractometer	4568 independent reflections
Absorption correction: multi-scan	4027 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2003)	$R_{\rm int} = 0.022$
$T_{\min} = 0.820, T_{\max} = 0.874$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 246 parameters $wR(F^2) = 0.082$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.34$ e Å $^{-3}$ 4568 reflections $\Delta \rho_{min} = -0.33$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N1 - H1A \cdots O3 \\ N1 - H1A \cdots O3^{i} \end{array}$	0.88 0.88	2.34 2.00	2.8730 (14) 2.8324 (14)	119 158

Symmetry code: (i) -x + 1, -y, -z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank NIH (ES07062), CRDF (RB2-2035 and RB2-2488) and ARO (DAAD19-02-1-0388) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2094).

References

- Adams, M. A., Luo, Y., Hove-Jensen, B., He, S.-M., van Staalduinen, L. M., Zechel, D. L. & Jia, Z. (2008). J. Bacteriol. 190, 1072–1083.
- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chekhlov, A. N., Aksinenko, A. Y., Sokolov, V. B. & Martynov, I. V. (1995). Dokl. Chem. 345, 296–299.
- Chen, C., Jin, W. & Li, X. (2008). Acta Cryst. E64, 0144.
- Guo, Y.-C., Wang, X.-F. & Ding, Y. (2008). Acta Cryst. E64, o384.
- Kachkovskyi, G. O. & Kolodiazhnyi, O. I. (2007). Tetrahedron, 63, 12576– 12582.
- Liu, X.-L., Zhou, Y., Li, W.-Z., Fan, Z., Miao, F.-M., Mao, L.-J. & Chen, R.-Y. (1995). Acta Cryst. C51, 2350–2352.
- Makhaeva, G. F., Malygin, V. V., Aksinenko, A. Y., Sokolov, V. B., Strakhova, N. N., Rasdolsky, A. N., Richardson, R. J. & Martynov, I. V. (2005). Dokl. Biochem. Biophys. 400, 831–835.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation $\mu = 0.34 \text{ mm}^{-1}$

 $0.60 \times 0.42 \times 0.40$ mm

T = 113 (2) K

Acta Cryst. (2008). E64, 01425 [doi:10.1107/S1600536808020175]

Diethyl [2,2,2-trifluoro-1-phenylsulfonylamino-1-(trifluoromethyl)ethyl]phosphonate

S. J. Wijeyesakere, F. A. Nasser, J. W. Kampf, A. Y. Aksinenko, V. B. Sokolov, V. V. Malygin, G. F. Makhaeva and R. J. Richardson

Comment

The title compound is a member of the fluorinated α -aminophosphonate (FAP) group of compounds $[(RO)_2P(O)C(CF_3)_2NHS(O)_2C_6H_5; R = CH_3, C_2H_5, C_3H_7, iso-C_3H_7, n-C_4H_9, iso-C_4H_9, iso-C_5H_{11}, n-C_5H_{11}, and n-C_6H_{13}]$ that have been synthesized and used in biochemical studies as inhibitors of serine hydrolases (Chekhlov *et al.*, 1995; Makhaeva *et al.*, 2005). These studies suggested the hypothesis that inhibition of serine hydrolases by FAP compounds occurs *via* scission of the P—C bond to organophosphorylate the active site serine (Makhaeva *et al.*, 2005). Although P—C bonds are exceptionally stable in most phosphonates, enzymes such as bacterial carbon-phosphorus lyase are capable of catalyzing their cleavage, thus providing a potential method for destroying toxic phosphonates that might otherwise accumulate in the environment (Adams *et al.*, 2008). Moreover, the structure of diisopentyl-FAP revealed a 1.888 (4) Å P—C bond (Chekhlov *et al.*, 1995), which was calculated to be longer and weaker than P—C bonds in phosphonates lacking adjacent –CF₃ groups (Makhaeva *et al.*, 2005).

To provide a further test of our hypothesis, the *X*-ray crystal structure of the title compound was determined (Fig 1). The title compound contains an intramolecular P=O···H—N hydrogen bond (Fig. 1; Table 1), and in the crystal it is linked *via* two intermolecular P=O···H—N hydrogen bonds to form inversion-related dimers (Fig. 2; Table 1). As predicted, the structure of diethyl-FAP revealed an elongated P—C bond that was 1.8797 (13) Å in length, which is not significantly different from the 1.888 (4) Å P—C bond in diisopentyl-FAP (Chekhlov *et al.*, 1995). This is long compared to P—C bond lengths of 1.822 (2) Å (Chen *et al.*, 2008), 1.803 (4) Å (Guo *et al.*, 2008), 1.818 (5) Å (Kachkovskyi and Kolodiazhnyi, 2007), and 1.805 (6) Å (Liu *et al.*, 1995) reported for the crystal structures of a variety of dialkyl phosphonates lacking α -CF₃ groups. The long P—C bond in diethyl-FAP is expected to be labile and would explain the ability of the compound to organophosphorylate and inhibit serine hydrolases as well as their ability to undergo hydrolysis to yield phosphoric acid diethyl ester and the amide, (CF₃)₂CH–NH–SO₂–C₆H₅ (Makhaeva *et al.*, 2005).

Experimental

The title compound was synthesized by mixing ether solutions of equimolar amounts of diethylphosphite and the sulfonylimine of hexafluoroacetone followed by subsequent recrystallization from petroleum ether.

Colorless plates of the ethyl analog were grown *via* evaporation from methanol at 22 °C. A crystal with dimensions of 0.60 \times 0.42 \times 0.40 mm was cut from a larger crystal and mounted on a standard Bruker *SMART* CCD-based X-ray diffractometer equipped with a LT-2 low temperature device and normal focus Mo-target X-ray tube ($\lambda = 0.71073$ Å) operated at 2000 W power (50 kV, 40 mA). X-ray intensities were measured at 113 (2) K with the detector placed 4.980 cm from the crystal. A total of 3030 frames were collected with a scan width of 0.3° in ω and φ and an exposure time of 20 sec/frame.

Data integration yielded a total of 20001 reflections to a maximum 2θ value of 56.58° of which 4568 were independent and 4343 were greater than $2\sigma(I)$. The final cell constants were based on the xyz centroids of 6691 reflections above $10\sigma(I)$.

Refinement

The hydrogen atoms were treated as riding, with N—H distance = 0.88 Å and C—H distances in the range 0.95–0.99 Å with $U_{iso}(H) = 1.2U_{eq}(N,C)$, $1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. Structure of diethyl-FAP showing the atom numbering scheme. The intramolecular hydrogen bond is shown as a dashed line. Ellipsoids represent 50% occupancy.

Fig. 2. The dimer of diethyl-FAP, showing the intermolecular hydrogen bonds and the atom labelling scheme.

Diethyl [2,2,2-trifluoro-1-phenylsulfonylamino-1-(trifluoromethyl)ethyl]phosphonate

Crystal data	
C ₁₃ H ₁₆ F ₆ NO ₅ PS	$F_{000} = 904$
$M_r = 443.3$	$D_{\rm x} = 1.596 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 6567 reflections
<i>a</i> = 11.6913 (15) Å	$\theta = 2.9 - 28.3^{\circ}$
<i>b</i> = 10.1375 (13) Å	$\mu = 0.35 \text{ mm}^{-1}$
c = 15.5955 (19) Å	T = 113 (2) K
$\beta = 93.264 \ (2)^{\circ}$	Plate, colourless
$V = 1845.4 (4) \text{ Å}^3$	$0.60\times0.42\times0.40~mm$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	4568 independent reflections
Radiation source: fine-focus sealed tube	4027 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 113(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
φ and ω scans	$\theta_{\min} = 2.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -15 \rightarrow 15$
$T_{\min} = 0.820, \ T_{\max} = 0.874$	$k = -13 \rightarrow 13$

20001 measured reflections $l = -20 \rightarrow 20$

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0427P)^2 + 0.6948P]$ where $P = (F_0^2 + 2F_0^2)/2$
$R[F^2 > 2\sigma(F^2)] = 0.029$	where $F = (F_0 + 2F_c)/3$ $(\Delta/\sigma)_{max} = 0.001$
$wR(F^2) = 0.082$	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
<i>S</i> = 1.03	$\Delta \rho_{\rm min} = -0.33 \ e \ {\rm \AA}^{-3}$
4568 reflections	Extinction correction: none
246 parameters	

Special details

Experimental. 2103 frames \times 20 sec (a) 4.980 cm; 0.3 ° scans in $\omega \& \phi$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.64284 (3)	0.17485 (3)	0.04487 (2)	0.02726 (9)
S1	0.33796 (3)	0.15018 (3)	0.174771 (18)	0.02622 (8)
N1	0.46059 (9)	0.12554 (10)	0.13045 (6)	0.0247 (2)
H1A	0.4569	0.0699	0.0870	0.030*
F1	0.73735 (8)	0.14398 (10)	0.24829 (6)	0.0445 (2)
F2	0.66649 (8)	-0.02537 (9)	0.17986 (5)	0.0429 (2)
F3	0.57711 (8)	0.05961 (9)	0.28299 (5)	0.0412 (2)
F4	0.56725 (9)	0.33003 (9)	0.27115 (5)	0.0434 (2)
F5	0.67125 (8)	0.38612 (9)	0.16867 (6)	0.0415 (2)
F6	0.48768 (7)	0.39288 (8)	0.14967 (5)	0.03547 (19)
C1	0.26341 (11)	0.26504 (13)	0.10763 (7)	0.0255 (2)
C2	0.24216 (12)	0.23293 (14)	0.02114 (8)	0.0307 (3)
H2A	0.2676	0.1513	-0.0009	0.037*
C3	0.18337 (14)	0.32241 (16)	-0.03191 (9)	0.0398 (3)
H3A	0.1682	0.3022	-0.0909	0.048*
C4	0.14648 (15)	0.44131 (17)	0.00055 (9)	0.0435 (4)
H4A	0.1074	0.5028	-0.0366	0.052*
C5	0.16614 (14)	0.47135 (16)	0.08707 (9)	0.0402 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H5A	0.1391	0.5522	0.1091	0.048*
C6	0.22553 (12)	0.38277 (14)	0.14136 (8)	0.0313 (3)
H6A	0.2399	0.4026	0.2005	0.038*
C7	0.57400 (11)	0.18007 (12)	0.15084 (8)	0.0258 (2)
C8	0.57452 (12)	0.32405 (14)	0.18606 (9)	0.0326 (3)
C9	0.63978 (13)	0.08914 (14)	0.21698 (9)	0.0342 (3)
C10	0.86488 (14)	0.16185 (18)	0.02046 (12)	0.0464 (4)
H10A	0.8876	0.2351	-0.0170	0.056*
H10B	0.8423	0.0853	-0.0161	0.056*
C11	0.96179 (17)	0.1256 (3)	0.08278 (18)	0.0793 (7)
H11A	0.9820	0.2017	0.1194	0.119*
H11B	1.0283	0.0995	0.0512	0.119*
H11C	0.9386	0.0519	0.1186	0.119*
C12	0.50917 (13)	0.29279 (16)	-0.07438 (9)	0.0367 (3)
H12A	0.4590	0.3713	-0.0728	0.044*
H12B	0.4613	0.2134	-0.0674	0.044*
C13	0.56368 (16)	0.28690 (17)	-0.15912 (10)	0.0455 (4)
H13A	0.6155	0.3622	-0.1640	0.068*
H13B	0.5040	0.2901	-0.2058	0.068*
H13C	0.6071	0.2046	-0.1628	0.068*
01	0.27788 (9)	0.02744 (10)	0.16554 (6)	0.0339 (2)
O2	0.36007 (9)	0.20787 (10)	0.25771 (5)	0.0346 (2)
O3	0.61539 (8)	0.04887 (9)	0.00278 (6)	0.0311 (2)
O4	0.77052 (9)	0.20205 (12)	0.07141 (7)	0.0435 (3)
O5	0.59785 (9)	0.29985 (10)	-0.00394 (6)	0.0348 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
P1	0.02908 (17)	0.02691 (17)	0.02539 (16)	0.00270 (12)	-0.00198 (12)	-0.00504 (12)
S1	0.03576 (17)	0.02732 (16)	0.01571 (13)	0.00577 (12)	0.00261 (11)	0.00207 (10)
N1	0.0305 (5)	0.0241 (5)	0.0192 (4)	0.0051 (4)	-0.0018 (4)	-0.0048 (4)
F1	0.0422 (5)	0.0527 (5)	0.0364 (4)	0.0091 (4)	-0.0185 (4)	-0.0058 (4)
F2	0.0575 (5)	0.0330 (4)	0.0363 (4)	0.0205 (4)	-0.0127 (4)	-0.0031 (3)
F3	0.0557 (5)	0.0430 (5)	0.0236 (4)	0.0084 (4)	-0.0093 (4)	0.0041 (3)
F4	0.0591 (6)	0.0422 (5)	0.0277 (4)	0.0078 (4)	-0.0074 (4)	-0.0163 (3)
F5	0.0415 (5)	0.0342 (5)	0.0479 (5)	-0.0042 (4)	-0.0065 (4)	-0.0146 (4)
F6	0.0423 (4)	0.0229 (4)	0.0404 (4)	0.0082 (3)	-0.0050 (3)	-0.0057 (3)
C1	0.0292 (6)	0.0292 (6)	0.0181 (5)	0.0059 (5)	0.0025 (4)	0.0009 (4)
C2	0.0388 (7)	0.0329 (7)	0.0202 (5)	0.0110 (5)	0.0005 (5)	-0.0027 (5)
C3	0.0523 (9)	0.0449 (8)	0.0215 (6)	0.0175 (7)	-0.0052 (6)	-0.0026 (5)
C4	0.0550 (9)	0.0439 (8)	0.0304 (7)	0.0243 (7)	-0.0075 (6)	0.0003 (6)
C5	0.0500 (8)	0.0379 (8)	0.0320 (7)	0.0214 (7)	-0.0022 (6)	-0.0062 (6)
C6	0.0371 (7)	0.0346 (7)	0.0222 (5)	0.0100 (5)	0.0012 (5)	-0.0042 (5)
C7	0.0319 (6)	0.0237 (6)	0.0210 (5)	0.0065 (5)	-0.0062 (4)	-0.0044 (4)
C8	0.0386 (7)	0.0287 (6)	0.0294 (6)	0.0053 (5)	-0.0067 (5)	-0.0091 (5)
C9	0.0412 (7)	0.0339 (7)	0.0261 (6)	0.0100 (6)	-0.0105 (5)	-0.0032 (5)
C10	0.0367 (8)	0.0492 (9)	0.0545 (10)	-0.0068 (7)	0.0128 (7)	-0.0050 (7)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.0352 (9)	0.110 (2)	0.0913 (17)	0.0118 (11)	-0.0041 (10)	-0.0132 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.0365 (7)	0.0387 (8)	0.0345 (7)	0.0026 (6)	-0.0009 (5)	0.0107 (6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C13	0.0660 (11)	0.0390 (8)	0.0318 (7)	0.0067 (7)	0.0048 (7)	0.0056 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	0.0433 (5)	0.0309 (5)	0.0280 (4)	-0.0005 (4)	0.0077 (4)	0.0054 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2	0.0497 (6)	0.0391 (5)	0.0150 (4)	0.0111 (4)	0.0014 (4)	-0.0011 (4)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O3	0.0386 (5)	0.0286 (5)	0.0259 (4)	0.0044 (4)	0.0006 (4)	-0.0070 (4)
O5 0.0443 (6) 0.0288 (5) 0.0308 (5) -0.0027 (4) -0.0012 (4) 0.0026 (4) Geometric parameters (Å, °) 0.0308 (5) -0.0027 (4) -0.0012 (4) 0.0026 (4) PI03 1.4520 (10) C4C5 1.390 (2) PI05 1.5545 (10) C5C6 1.3923 (19) SI01 1.4321 (11) C7C9 1.5539 (17) <td>O4</td> <td>0.0289 (5)</td> <td>0.0543 (7)</td> <td>0.0466 (6)</td> <td>0.0028 (5)</td> <td>-0.0028 (4)</td> <td>-0.0166 (5)</td>	O4	0.0289 (5)	0.0543 (7)	0.0466 (6)	0.0028 (5)	-0.0028 (4)	-0.0166 (5)
Geometric parameters (\hat{A} , \hat{Y}) P103 1.4632 (10) C4C5 1.390 (2) P104 1.5509 (11) C4H4A 0.9500 P105 1.5545 (10) C5C6 1.3923 (19) P107 1.8797 (13) C5H5A 0.9500 S101 1.4226 (9) C6-H6A 0.9500 S101 1.4221 (11) C7C9 1.5539 (17) S101 1.7629 (12) C10O4 1.4540 (19) N167 1.4549 (16) C10C11 1.496 (3) N1-H1A 0.8800 C10H10B 0.9900 F2C9 1.3316 (17) C10H10B 0.9900 F2C9 1.3313 (18) C11H11A 0.9800 F3C9 1.3335 (18) C12O5 1.4687 (17) F6-C8 1.3320 (16) C12C13 1.501 (2) C1C6 1.3870 (18) C12H12A 0.9900 C2C3 1.388 (18) C13H13A 0.9800 C3H2A 0.9500 C1-H13B 0.9800 C3H2A 0.9500 C13-H13A 0.9800 <td< td=""><td>O5</td><td>0.0443 (6)</td><td>0.0288 (5)</td><td>0.0308 (5)</td><td>-0.0027 (4)</td><td>-0.0012 (4)</td><td>0.0026 (4)</td></td<>	O5	0.0443 (6)	0.0288 (5)	0.0308 (5)	-0.0027 (4)	-0.0012 (4)	0.0026 (4)
P1-031.4632 (10)C4-C51.390 (2)P1-041.5509 (11)C4-H4A0.9500P1-051.5545 (10)C5-C61.3923 (19)P1-C71.8797 (13)C5-H5A0.9500S1-021.4296 (9)C6-H6A0.9500S1-011.4321 (11)C7-C91.5539 (17)S1-N11.6458 (11)C7-C71.5539 (17)S1-C11.7629 (12)C10-O41.4540 (19)N1-C71.4549 (16)C10-C111.496 (3)N1-H1A0.8000C10-H10A0.9900F1-C91.3361 (17)C10-H10B0.9900F2-C91.3419 (16)C11-H11A0.9800F3-C91.3359 (16)C11-H11A0.9800F4-C81.3359 (16)C12-C131.501 (2)C1-C61.3870 (18)C12-C131.501 (2)C1-C61.3870 (18)C12-H12A0.9900C1-C21.366 (2)C13-H13B0.9800C2-C31.3838 (18)C13-H13B0.9800C3-C41.386 (2)C13-H13B0.9800C3-C41.386 (2)C13-H13B0.9800C3-C41.386 (2)C13-H13B0.9800C3-C41.386 (2)C13-H13B0.9800C3-C41.386 (2)C13-H13B0.9800C3-C41.386 (2)C13-H13B0.9800C3-C41.386 (2)C13-H13B0.9800C3-C41.386 (2)C13-H13B0.9800C3-C41.386 (2)C13-H13B0.9800C3-H3A0.950	Geometric pa	vrameters (Å, °)					
P104 1.5509 (11) C4H4A 0.9500 P105 1.5545 (10) C5C6 1.3923 (19) P1C7 1.8797 (13) C5H5A 0.9500 S102 1.4296 (9) C6H6A 0.9500 S101 1.4321 (11) C7C9 1.5539 (17) S1N1 1.6458 (11) C7C8 1.5594 (17) S1C1 1.7629 (12) C10O4 1.4540 (19) N1C7 1.4549 (16) C10C11 1.496 (3) N1-H1A 0.8800 C10-H10A 0.9900 F2C9 1.3419 (16) C11H11B 0.9800 F3C8 1.3359 (16) C11H11A 0.9800 F4C8 1.3320 (16) C12C13 1.501 (2) C1C6 1.3870 (18) C12H12A 0.9900 C1C2 1.3960 (16) C12H12A 0.9800 C2H2A 0.9500 C13H13B 0.9800 C2H2A 0.9500 C13H13B 0.9800 C3H3A 0.9500 C13H13B 0.9800 C3H3A 0.9500 C13H13B 0	P1—O3		1.4632 (10)	C4—	C5	1.39	0(2)
P1-O51.5545 (10)C5-C61.3923 (19)P1-C71.8797 (13)C5-H5A0.9500S1-O21.4296 (9)C6-H6A0.9500S1-O11.4321 (11)C7-C91.5539 (17)S1-N11.6458 (11)C7-C81.5594 (17)S1-C11.7629 (12)C10-O41.4540 (19)N1-C71.4549 (16)C10-C111.496 (3)N1-H1A0.8800C10-H10A0.9900F2-C91.3361 (17)C10-H10B0.9800F3-C91.3359 (16)C11-H11A0.9800F4-C81.3359 (16)C11-H11B0.9800F5-C81.3359 (16)C12-O51.4687 (17)F6-C81.3350 (16)C12-H12A0.9900C1-C61.3870 (18)C12-H12A0.9900C2-C31.3838 (18)C13-H13A0.9800C2-C31.3838 (18)C13-H13A0.9800C2-C441.386 (2)C13-H13B0.9800C3-H2A0.9500C13-H13B0.9800C3-H3A0.9500C13-H13C0.9800C3-H3A0.9500C13-H13C0.9800C3-H3A0.9500C13-H13C0.9800C3-H3A0.9500C13-H13C0.9800C3-H3A0.9500C13-H13C0.9800C3-H3A0.9500C13-H13C0.9800C3-H3A0.9500C13-H13C0.9600C3-H3A0.9501C13-H13C0.9600C3-H3A0.9506F3-C8-F5107.48 (12)O3-P1-O5115.62 (6) <td< td=""><td>P1—O4</td><td></td><td>1.5509 (11)</td><td>C4—</td><td>H4A</td><td>0.95</td><td>00</td></td<>	P1—O4		1.5509 (11)	C4—	H4A	0.95	00
PIC71.8797 (13)C5-H5A0.9500SIO21.4296 (9)C6-H6A0.9500SI-O11.4321 (11)C7-C91.5539 (17)SI-O11.4321 (11)C7-C81.5539 (17)SI-C11.7629 (12)C10-O41.4540 (19)NI-C71.4549 (16)C10-C111.496 (3)NI-HIA0.8800C10-H10A0.9900F2-C91.3361 (17)C10-H10B0.9800F3-C91.3351 (18)C11-H11B0.9800F5-C81.3359 (16)C12-H11B0.9800F5-C81.3359 (16)C12-C131.501 (2)C1-C61.3870 (18)C12-O51.4687 (17)F6-C81.3350 (16)C12-H12A0.9900C2-C31.3838 (18)C13-H13A0.9800C2-C31.3838 (18)C13-H13A0.9800C3-H2A0.9500C13-H13B0.9800C3-H2A0.9500C13-H13B0.9800C3-H2A0.9500C13-H13C0.9800C3-H2A0.9500C13-H13C0.9800C3-H2A0.9500C13-H13C0.9800C3-H2A0.9500C13-H13C0.9800C3-H2A0.9506F5-C8-F410643 (11)O3-P1-O4117.26 (6)F6-C8-F5107.48 (12)O3-P1-C7106.23 (6)F5-C8-C7110.86 (10)O4-P1-C7102.36 (6)F3-C9-F110.78 (11)O3-P1-C7108.97 (6)F3-C9-F2106.51 (10)O4-P1-C7102.36 (6)F1-C9-F2107.63 (12)	P1—O5		1.5545 (10)	С5—	C6	1.39	23 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P1—C7		1.8797 (13)	С5—	H5A	0.95	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1—O2		1.4296 (9)	С6—	H6A	0.95	00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1—O1		1.4321 (11)	С7—	С9	1.55	39 (17)
S1-C11.7629 (12)C10-O41.4540 (19)NI-C71.4549 (16)C10-C111.496 (3)NI-HIA0.8800C10-H10A0.9900F1-C91.3361 (17)C10-H10B0.9900F2-C91.3319 (16)C11-H11A0.9800F3-C91.3313 (18)C11-H11B0.9800F4-C81.3359 (16)C11-H11C0.9800F5-C81.3359 (16)C12-C131.501 (2)C1-C61.3870 (18)C12-C130.9900C1-C61.3870 (18)C12-H12A0.9900C1-C21.3960 (16)C12-H12B0.9900C2-C31.388 (18)C13-H13A0.9800C3-C41.386 (2)C13-H13C0.9800C3-C41.386 (2)C13-H13C0.9800C3-H2A0.9500C13-H13C0.9800C3-P1-O4117.26 (6)F6-C8-F5107.48 (12)O3-P1-O5115.62 (6)F6-C8-F4106.43 (11)O4-P1-O5106.23 (6)F5-C8-C7110.65 (10)O4-P1-C7102.36 (6)F5-C8-C7110.65 (10)O4-P1-C7102.36 (6)F3-C9-F1107.88 (11)O2-S1-O1120.58 (6)F3-C9-F1107.88 (11)O2-S1-O1105.96 (6)F1-C9-F2107.63 (12)O2-S1-O1105.97 (6)F3-C9-C7112.07 (12)O1-S1-N1105.90 (5)F2-C9-C7110.29 (10)O2-S1-O1105.93 (5)F2-C9-C7110.20 (10)O2-S1-O1105.93 (5)F2-C9-C7110.20 (10)O2-S1-O1<	S1—N1		1.6458 (11)	С7—	C8	1.55	94 (17)
N1C71.4549 (16)C10C111.496 (3)N1H1A0.8800C10H10A0.9900F1C91.3361 (17)C10H10B0.9900F2C91.3319 (16)C11H11A0.9800F3C91.3313 (18)C11H11B0.9800F4C81.3359 (16)C11H11C0.9800F5C81.3354 (18)C12O51.4687 (17)F6-C81.3320 (16)C12H12A0.9900C1C61.3870 (18)C12H12A0.9900C1C21.3960 (16)C12H12B0.9900C2C31.388 (18)C13H13A0.9800C3C41.386 (2)C13H13B0.9800C3C41.386 (2)C13H13B0.9800C3H2A0.9500C13H13B0.9800C3H1A0.9500C13H13B0.9800C3H2A0.9500C13H13B0.9800C3H2A0.9500C13H13B0.9800C3H2A0.9500C13H13B0.9800C3H2A0.9500C13H13B0.9800C3H2A0.9500C13H13B0.9800C3H2A0.9500C13H13B0.9800C3H2A0.9500C13H13B0.9800C3H2A0.9500C13H13B0.9800C3H2A0.9500F6C8F5107.48 (12)O3-P1O5115.62 (6)F6C8F4106.43 (11)O3-P1-C7106.39 (6)F3C9F2110.65 (10)O4P1-O5106.39 (6)F3C9F2 <td< td=""><td>S1—C1</td><td></td><td>1.7629 (12)</td><td>C10-</td><td>04</td><td>1.45</td><td>40 (19)</td></td<>	S1—C1		1.7629 (12)	C10-	04	1.45	40 (19)
N1-H1A0.8800C10-H10A0.9900F1-C91.3361 (17)C10-H10B0.9900F2-C91.3419 (16)C11-H11A0.9800F3-C91.3313 (18)C11-H11B0.9800F4-C81.3359 (16)C11-H11C0.9800F5-C81.3354 (18)C12-O51.4687 (17)F6-C81.3320 (16)C12-H12A0.9900C1-C61.3870 (18)C12-H12A0.9900C2-C31.3838 (18)C13-H13A0.9800C2-C31.3838 (18)C13-H13A0.9800C2-C41.386 (2)C13-H13B0.9800C3-C41.386 (2)C13-H13B0.9800C3-H3A0.9500C13-H13B0.9800C3-H3A0.9500C13-H13B0.9800C3-H1-C7106.23 (6)F6-C8-F4106.43 (11)O3-P1-O5115.62 (6)F6-C8-F4108.02 (11)O4-P1-C7102.36 (6)F3-C9-F1110.84 (11)O5-P1-C7104.94 (6)F4-C8-C7110.65 (10)O4-P1-C7102.36 (6)F3-C9-F1107.88 (11)O2-S1-N1108.97 (6)F3-C9-F2106.91 (12)O1-S1-N1108.97 (6)F3-C9-C7119.20 (11)O1-S1-N1105.90 (5)F2-C9-C7110.20 (10)C7-N1-S1130.95 (8)O4-C10-C11106.50 (16)C7-N1-N1-N114.5C1-C1-H10A110.4C6-C1-C2121.60 (11)04-C10-H10B110.4	N1—C7		1.4549 (16)	C10-	C11	1.49	6 (3)
F1-C9 $1.3361(17)$ C10-H10B 0.9900 F2-C9 $1.3419(16)$ C11-H11A 0.9800 F3-C9 $1.3313(18)$ C11-H11B 0.9800 F4-C8 $1.3359(16)$ C11-H11C 0.9800 F5-C8 $1.3354(18)$ C12-O5 $1.4687(17)$ F6-C8 $1.3320(16)$ C12-C13 $1.501(2)$ C1-C6 $1.3870(18)$ C12-H12A 0.9900 C1-C2 $1.3960(16)$ C12-H12B 0.9900 C2-C3 $1.3838(18)$ C13-H13A 0.9800 C2-C4 $1.386(2)$ C13-H13B 0.9800 C3-C4 $1.386(2)$ C13-H13C 0.9800 C3-H3A 0.9500 $-1.413C$ 0.9800 C3-H3A 0.9500 $-1.413C$ 0.9800 C3-H3A 0.9500 $-1.413C$ $0.9802(11)$ O4-P1-O5 $106.23(6)$ F6-C8-F5 $107.48(12)$ O3-P1-O4 $17.26(6)$ F6-C8-F4 $106.43(11)$ O3-P1-C7 $108.97(6)$ F3-C9-F1 $10.65(10)$ O4-P1-C7 $102.36(6)$ F3-C9-F1 $10.7.88(11)$ O2-S1-O1 $105.97(6)$ F3-C9-F1 $107.88(11)$ O2-S1-O1 $108.97(6)$ F3-C9-F2 $106.91(12)$ O1-S1-N1 $105.96(6)$ F1-C9-F2 $107.63(12)$ O2-S1-O1 $105.97(6)$ F3-C9-C7 $11.92(11)$ O1-S1-N1 $105.97(6)$ F3-C9-C7 $11.92(11)$ O1-S1-N1 $105.97(6)$ F3-C9-C7 $11.92(11)$ O1-S1-C1 $106.92(6)$ F1-C9-C7 $11.207(12)$ N1-S1-C1 10	N1—H1A		0.8800	C10-	-H10A	0.99	00
F2-C91.3419 (16) $C11-H11A$ 0.9800 $F3-C9$ 1.3313 (18) $C11-H11B$ 0.9800 $F4-C8$ 1.3359 (16) $C11-H11C$ 0.9800 $F5-C8$ 1.3354 (18) $C12-O5$ 1.4687 (17) $F6-C8$ 1.3320 (16) $C12-C13$ 1.501 (2) $C1-C6$ 1.3870 (18) $C12-H12A$ 0.9900 $C1-C2$ 1.3960 (16) $C12-H12B$ 0.9900 $C2-C3$ 1.3838 (18) $C13-H13A$ 0.9800 $C2-H2A$ 0.9500 $C13-H13B$ 0.9800 $C3-C4$ 1.386 (2) $C13-H13B$ 0.9800 $C3-H3A$ 0.9500 $C3-H13C$ 0.9800 $C3-H2A$ 0.9500 $C3-H13C$ 0.9800 $C3-P1-O4$ 117.26 (6) $F6-C8-F5$ 107.48 (12) $O3-P1-O5$ 115.62 (6) $F6-C8-F4$ 108.02 (11) $O4-P1-O5$ 106.23 (6) $F5-C8-F4$ 108.02 (11) $O4-P1-C7$ 102.36 (6) $F5-C8-C7$ 110.65 (10) $O4-P1-C7$ 102.36 (6) $F3-C9-F1$ 107.88 (11) $O2-S1-O1$ 120.58 (6) $F3-C9-F2$ 107.63 (12) $O2-S1-N1$ 108.97 (6) $F3-C9-F2$ 107.63 (12) $O2-S1-C1$ 108.97 (6) $F3-C9-C7$ 111.92 (11) $O1-S1-N1$ 105.09 (5) $F2-C9-C7$ 112.07 (12) $N1-S1-C1$ 105.95 (8) $O4-C10-C11$ 106.50 (16) $C7-N1-H1A$ 114.5 $O4-C10-H10A$ 110.4 $C6-C1-C2$ 121.60 (11) $O4-C10-H10B$ 110.4	F1—C9		1.3361 (17)	C10-	-H10B	0.99	00
F3-C91.3313 (18)C11H11B0.9800F4-C81.3359 (16)C11H11C0.9800F5-C81.3354 (18)C12-O51.4687 (17)F6-C81.3320 (16)C12C131.501 (2)C1-C61.3870 (18)C12H12A0.9900C1-C21.3960 (16)C12H12B0.9900C2-C31.3838 (18)C13H13A0.9800C2-H2A0.9500C13H13B0.9800C3-C41.386 (2)C13H13C0.9800C3-H3A0.9500O3-P1-O4117.26 (6)F6C8F5107.48 (12)O3-P1-O5115.62 (6)F6C8F4108.02 (11)O4-P1-O5106.23 (6)F5C8F4106.43 (11)O3-P1-C7108.97 (6)F6C8C7110.65 (10)O4-P1-C7102.36 (6)F3C9F1107.88 (11)O5-P1-C7104.94 (6)F4C8C7113.15 (11)O2-S1-N1108.97 (6)F3C9F2106.91 (12)O1-S1-N1105.06 (6)F1C9F2107.63 (12)O2-S1-N1108.97 (6)F3C9C7112.07 (12)N1-S1-C1105.30 (5)F2-C9C7110.20 (10)C7-N1-S1130.95 (8)O4C10H10A110.4S1-N1-H1A114.5C11C10-H10A110.4	F2—C9		1.3419 (16)	C11-	-H11A	0.98	00
F4C81.3359 (16)C11H11C0.9800F5C81.3354 (18)C12O51.4687 (17)F6C81.3320 (16)C12C131.501 (2)C1C61.3870 (18)C12H12A0.9900C1C21.3960 (16)C12H12B0.9900C2C31.3838 (18)C13H13A0.9800C2H2A0.9500C13H13B0.9800C3C41.386 (2)C13H13C0.9800C3H3A0.9500C3H13B0.9800C3H3A0.9500	F3—C9		1.3313 (18)	C11-	-H11B	0.98	00
F5-C81.3354 (18)C12-O51.4687 (17)F6-C81.3320 (16)C12-C131.501 (2)C1-C61.3870 (18)C12-H12A0.9900C1-C21.3960 (16)C12-H12B0.9900C2-C31.3838 (18)C13-H13A0.9800C2-H2A0.9500C13-H13B0.9800C3-C41.386 (2)C13-H13C0.9800C3-H3A0.9500 $$	F4—C8		1.3359 (16)	C11-	-H11C	0.98	00
F6-C81.3320 (16) $C12-C13$ 1.501 (2) $C1-C6$ 1.3870 (18) $C12-H12A$ 0.9900 $C1-C2$ 1.3960 (16) $C12-H12B$ 0.9900 $C2-C3$ 1.3838 (18) $C13-H13A$ 0.9800 $C2-H2A$ 0.9500 $C13-H13B$ 0.9800 $C3-C4$ 1.386 (2) $C13-H13C$ 0.9800 $C3-H3A$ 0.9500 $C13-H13C$ 0.9800 $C3-H3A$ 0.9500 $C3-H13C$ 0.9800 $C3-H1-O4$ 117.26 (6) $F6-C8-F5$ 107.48 (12) $O3-P1-O5$ 115.62 (6) $F6-C8-F4$ 108.02 (11) $O4-P1-O5$ 106.23 (6) $F5-C8-F4$ 106.43 (11) $O3-P1-C7$ 108.97 (6) $F6-C8-C7$ 110.65 (10) $O4-P1-C7$ 102.36 (6) $F5-C8-C7$ 110.84 (11) $O5-P1-C7$ 104.94 (6) $F4-C8-C7$ 113.15 (11) $O2-S1-O1$ 120.58 (6) $F3-C9-F1$ 107.88 (11) $O2-S1-O1$ 108.97 (6) $F3-C9-F2$ 106.91 (12) $O1-S1-N1$ 105.06 (6) $F1-C9-F2$ 107.63 (12) $O2-S1-C1$ 108.97 (6) $F3-C9-C7$ 111.92 (11) $O1-S1-C1$ 105.30 (5) $F2-C9-C7$ 110.20 (10) $C7-N1-S1$ 13.095 (8) $O4-C10-C11$ 106.50 (16) $C7-N1-H1A$ 114.5 $C11-C10-H10A$ 110.4 $S1-N1-H1A$ 144.5 $C10-C1-H10A$ 110.4	F5—C8		1.3354 (18)	C12-	05	1.46	87 (17)
C1C6 $1.3870 (18)$ C12H12A 0.9900 C1C2 $1.3960 (16)$ C12H12B 0.9900 C2C3 $1.3838 (18)$ C13H13A 0.9800 C2H2A 0.9500 C13H13B 0.9800 C3C4 $1.386 (2)$ C13H13C 0.9800 C3H3A 0.9500 $C13H13C$ 0.9800 C3P1O4 $117.26 (6)$ F6C8F5 $107.48 (12)$ O3P1O5 $115.62 (6)$ F6C8F4 $108.02 (11)$ O4P1-O5 $106.23 (6)$ F5C8F4 $106.43 (11)$ O3P1-C7 $108.97 (6)$ F6C8C7 $110.65 (10)$ O4P1C7 $102.36 (6)$ F5C8C7 $110.84 (11)$ O5P1C7 $104.94 (6)$ F4C8C7 $113.15 (11)$ O2S1O1 $120.58 (6)$ F3C9F1 $106.91 (12)$ O1S1N1 $105.06 (6)$ F1C9F2 $106.91 (12)$ O1S1C1 $108.97 (6)$ F3C9C7 $111.92 (11)$ O1S1C1 $108.97 (6)$ F3C9C7 $112.07 (12)$ N1S1C1 $106.92 (6)$ F1C9C7 $112.07 (12)$ O1S1C1 $105.30 (5)$ F2C9C7 $110.20 (10)$ C7N1H1A 114.5 $04C10H10A$ 110.4 S1N1H1A 114.5 $C11C10H10A$ 110.4	F6—C8		1.3320 (16)	C12-	C13	1.50	1 (2)
C1C21.3960 (16)C12H12B0.9900C2C31.3838 (18)C13H13A0.9800C2H2A0.9500C13H13B0.9800C3C41.386 (2)C13H13C0.9800C3H3A0.9500 $$	C1—C6		1.3870 (18)	C12-	-H12A	0.99	00
C2-C31.3838 (18)C13-H13A0.9800C2-H2A0.9500C13-H13B0.9800C3-C41.386 (2)C13-H13C0.9800C3-H3A0.9500 $C3$ -H1-O4117.26 (6) $F6$ -C8-F5107.48 (12)O3-P1-O5115.62 (6) $F6$ -C8-F4108.02 (11)O4-P1-O5106.23 (6) $F5$ -C8-F4106.43 (11)O3-P1-C7108.97 (6) $F6$ -C8-C7110.65 (10)O4-P1-C7102.36 (6) $F5$ -C8-C7110.84 (11)O5-P1-C7104.94 (6) $F4$ -C8-C7113.15 (11)O2-S1-O1120.58 (6) $F3$ -C9-F1107.88 (11)O2-S1-N1108.97 (6) $F3$ -C9-F2106.91 (12)O1-S1-N1105.06 (6) $F1$ -C9-C7111.92 (11)O1-S1-C1106.92 (6) $F1$ -C9-C7110.20 (10)C7-N1-S1130.95 (8)O4-C10-C11106.50 (16)C7-N1-H1A114.5C11-C10-H10A110.4S1-N1-H1A114.5C11-C10-H10A110.4	C1—C2		1.3960 (16)	C12-	-H12B	0.99	00
C2—H2A0.9500C13—H13B0.9800C3—C41.386 (2)C13—H13C0.9800C3—H3A0.9500 03 —P1—O4117.26 (6)F6—C8—F5107.48 (12)O3—P1—O5115.62 (6)F6—C8—F4108.02 (11)O4—P1—O5106.23 (6)F5—C8—F4106.43 (11)O3—P1—C7108.97 (6)F6—C8—C7110.65 (10)O4—P1—C7102.36 (6)F5—C8—C7110.84 (11)O5—P1—C7104.94 (6)F4—C8—C7113.15 (11)O2—S1—O1120.58 (6)F3—C9—F1107.88 (11)O2—S1—N1108.97 (6)F3—C9—F2106.91 (12)O1—S1—N1105.06 (6)F1—C9—F2107.63 (12)O2—S1—C1108.97 (6)F3—C9—C7112.07 (12)N1—S1—C1105.30 (5)F2—C9—C7110.20 (10)C7—N1—S1130.95 (8)O4—C10—C11106.50 (16)C7—N1—H1A114.5C11—C10—H10A110.4S1—N1—H1A114.5C11—C10—H10A110.4	C2—C3		1.3838 (18)	C13-	-H13A	0.98	00
C3-C41.386 (2)C13-H13C0.9800C3-H3A0.9500O3-P1-O4117.26 (6)F6-C8-F5107.48 (12)O3-P1-O5115.62 (6)F6-C8-F4108.02 (11)O4-P1-O5106.23 (6)F5-C8-F4106.43 (11)O3-P1-C7108.97 (6)F6-C8-C7110.65 (10)O4-P1-C7102.36 (6)F5-C8-C7110.84 (11)O5-P1-C7104.94 (6)F4-C8-C7113.15 (11)O2-S1-O1120.58 (6)F3-C9-F1107.88 (11)O2-S1-N1108.97 (6)F3-C9-F2106.91 (12)O1-S1-N1105.06 (6)F1-C9-F2107.63 (12)O2-S1-C1108.97 (6)F3-C9-C7112.07 (12)N1-S1-C1106.92 (6)F1-C9-C7112.07 (12)N1-S1-C1105.30 (5)F2-C9-C7110.20 (10)C7-N1-S1130.95 (8)O4-C10-C11106.50 (16)C7-N1-H1A114.5C11-C10-H10A110.4S1-N1-H1A114.5C11-C10-H10A110.4	C2—H2A		0.9500	C13-	-H13B	0.98	00
C3—H3A0.9500O3—P1—O4117.26 (6)F6—C8—F5107.48 (12)O3—P1—O5115.62 (6)F6—C8—F4108.02 (11)O4—P1—O5106.23 (6)F5—C8—F4106.43 (11)O3—P1—C7108.97 (6)F6—C8—C7110.65 (10)O4—P1—C7102.36 (6)F5—C8—C7110.84 (11)O5—P1—C7104.94 (6)F4—C8—C7113.15 (11)O2—S1—O1120.58 (6)F3—C9—F1107.88 (11)O2—S1—N1108.97 (6)F3—C9—F2106.91 (12)O1—S1—N1105.06 (6)F1—C9—F2107.63 (12)O2—S1—C1108.97 (6)F3—C9—C7112.07 (12)N1—S1—C1105.30 (5)F2—C9—C7110.20 (10)C7—N1—S1130.95 (8)O4—C10—C11106.50 (16)C7—N1—H1A114.5C11—C10—H10A110.4S1—N1—H1A114.5C11—C10—H10A110.4	C3—C4		1.386 (2)	C13-	-H13C	0.98	00
03-P1-O4 $117.26 (6)$ $F6-C8-F5$ $107.48 (12)$ $03-P1-O5$ $115.62 (6)$ $F6-C8-F4$ $108.02 (11)$ $04-P1-O5$ $106.23 (6)$ $F5-C8-F4$ $106.43 (11)$ $03-P1-C7$ $108.97 (6)$ $F6-C8-C7$ $110.65 (10)$ $04-P1-C7$ $102.36 (6)$ $F5-C8-C7$ $110.84 (11)$ $05-P1-C7$ $104.94 (6)$ $F4-C8-C7$ $113.15 (11)$ $02-S1-O1$ $120.58 (6)$ $F3-C9-F1$ $107.88 (11)$ $02-S1-O1$ $108.97 (6)$ $F3-C9-F2$ $106.91 (12)$ $01-S1-N1$ $105.06 (6)$ $F1-C9-F2$ $107.63 (12)$ $02-S1-C1$ $108.97 (6)$ $F3-C9-C7$ $111.92 (11)$ $01-S1-C1$ $106.92 (6)$ $F1-C9-C7$ $112.07 (12)$ $N1-S1-C1$ $105.30 (5)$ $F2-C9-C7$ $110.20 (10)$ $C7-N1-S1$ $130.95 (8)$ $04-C10-C11$ $106.50 (16)$ $C7-N1-H1A$ 114.5 $C11-C10-H10A$ 110.4 $S1-N1-H1A$ 14.5 $C11-C10-H10B$ 110.4	С3—НЗА		0.9500				
O3-P1-O5115.62 (6) $F6-C8-F4$ 108.02 (11)O4-P1-O5106.23 (6) $F5-C8-F4$ 106.43 (11)O3-P1-C7108.97 (6) $F6-C8-C7$ 110.65 (10)O4-P1-C7102.36 (6) $F5-C8-C7$ 110.84 (11)O5-P1-C7104.94 (6) $F4-C8-C7$ 113.15 (11)O2-S1-O1120.58 (6) $F3-C9-F1$ 107.88 (11)O2-S1-N1108.97 (6) $F3-C9-F2$ 106.91 (12)O1-S1-N1105.06 (6) $F1-C9-F2$ 107.63 (12)O2-S1-C1108.97 (6) $F3-C9-C7$ 112.07 (12)O1-S1-C1105.30 (5) $F2-C9-C7$ 112.07 (12)N1-S1-C1105.30 (5) $F2-C9-C7$ 110.20 (10)C7-N1-S1130.95 (8)O4-C10-C11106.50 (16)C7-N1-H1A114.5C11-C10-H10A110.4S1-N1-H1A114.5C11-C10-H10A110.4	O3—P1—O4		117.26 (6)	F6—	C8—F5	107.	48 (12)
O4-P1-O5 $106.23 (6)$ $F5-C8-F4$ $106.43 (11)$ $O3-P1-C7$ $108.97 (6)$ $F6-C8-C7$ $110.65 (10)$ $O4-P1-C7$ $102.36 (6)$ $F5-C8-C7$ $110.84 (11)$ $O5-P1-C7$ $104.94 (6)$ $F4-C8-C7$ $113.15 (11)$ $O2-S1-O1$ $120.58 (6)$ $F3-C9-F1$ $107.88 (11)$ $O2-S1-N1$ $108.97 (6)$ $F3-C9-F2$ $106.91 (12)$ $O1-S1-N1$ $105.06 (6)$ $F1-C9-F2$ $107.63 (12)$ $O2-S1-C1$ $108.97 (6)$ $F3-C9-C7$ $111.92 (11)$ $O1-S1-C1$ $106.92 (6)$ $F1-C9-C7$ $112.07 (12)$ $N1-S1-C1$ $105.30 (5)$ $F2-C9-C7$ $110.20 (10)$ $C7-N1-S1$ $130.95 (8)$ $O4-C10-H10A$ 110.4 $S1-N1-H1A$ 114.5 $C11-C10-H10A$ 110.4	O3—P1—O5		115.62 (6)	F6—	C8—F4	108.	02 (11)
O3-P1-C7 $108.97 (6)$ $F6-C8-C7$ $110.65 (10)$ $O4-P1-C7$ $102.36 (6)$ $F5-C8-C7$ $110.84 (11)$ $O5-P1-C7$ $104.94 (6)$ $F4-C8-C7$ $113.15 (11)$ $O2-S1-O1$ $120.58 (6)$ $F3-C9-F1$ $107.88 (11)$ $O2-S1-N1$ $108.97 (6)$ $F3-C9-F2$ $106.91 (12)$ $O1-S1-N1$ $105.06 (6)$ $F1-C9-F2$ $107.63 (12)$ $O2-S1-C1$ $108.97 (6)$ $F3-C9-C7$ $111.92 (11)$ $O1-S1-C1$ $106.92 (6)$ $F1-C9-C7$ $112.07 (12)$ $N1-S1-C1$ $105.30 (5)$ $F2-C9-C7$ $110.20 (10)$ $C7-N1-S1$ $130.95 (8)$ $O4-C10-C11$ $106.50 (16)$ $C7-N1-H1A$ 114.5 $C11-C10-H10A$ 110.4 $S1-N1-H1A$ 114.5 $C11-C10-H10B$ 110.4	O4—P1—O5		106.23 (6)	F5—	C8—F4	106.	43 (11)
O4-P1-C7 102.36 (6) $F5-C8-C7$ 110.84 (11) $O5-P1-C7$ 104.94 (6) $F4-C8-C7$ 113.15 (11) $O2-S1-O1$ 120.58 (6) $F3-C9-F1$ 107.88 (11) $O2-S1-N1$ 108.97 (6) $F3-C9-F2$ 106.91 (12) $O1-S1-N1$ 105.06 (6) $F1-C9-F2$ 107.63 (12) $O2-S1-C1$ 108.97 (6) $F3-C9-F2$ 107.63 (12) $O2-S1-C1$ 106.92 (6) $F1-C9-C7$ 111.92 (11) $O1-S1-C1$ 106.92 (6) $F1-C9-C7$ 110.20 (10) $C7-N1-S1$ 130.95 (8) $O4-C10-C11$ 106.50 (16) $C7-N1-H1A$ 114.5 $O4-C10-H10A$ 110.4 $S1-N1-H1A$ 114.5 $C11-C10-H10A$ 110.4	O3—P1—C7		108.97 (6)	F6—	С8—С7	110.	65 (10)
O5-P1-C7 104.94 (6) $F4-C8-C7$ 113.15 (11) $O2-S1-O1$ 120.58 (6) $F3-C9-F1$ 107.88 (11) $O2-S1-N1$ 108.97 (6) $F3-C9-F2$ 106.91 (12) $O1-S1-N1$ 105.06 (6) $F1-C9-F2$ 107.63 (12) $O2-S1-C1$ 108.97 (6) $F3-C9-C7$ 111.92 (11) $O1-S1-C1$ 106.92 (6) $F1-C9-C7$ 112.07 (12) $N1-S1-C1$ 105.30 (5) $F2-C9-C7$ 110.20 (10) $C7-N1-S1$ 130.95 (8) $O4-C10-C11$ 106.50 (16) $C7-N1-H1A$ 114.5 $O4-C10-H10A$ 110.4 $S1-N1-H1A$ 114.5 $C11-C10-H10B$ 110.4	O4—P1—C7		102.36 (6)	F5—	С8—С7	110.	84 (11)
O2-S1-O1 120.58 (6) $F3-C9-F1$ 107.88 (11) $O2-S1-N1$ 108.97 (6) $F3-C9-F2$ 106.91 (12) $O1-S1-N1$ 105.06 (6) $F1-C9-F2$ 107.63 (12) $O2-S1-C1$ 108.97 (6) $F3-C9-C7$ 111.92 (11) $O1-S1-C1$ 106.92 (6) $F1-C9-C7$ 112.07 (12) $N1-S1-C1$ 105.30 (5) $F2-C9-C7$ 110.20 (10) $C7-N1-S1$ 130.95 (8) $O4-C10-C11$ 106.50 (16) $C7-N1-H1A$ 114.5 $O4-C10-H10A$ 110.4 $S1-N1-H1A$ 114.5 $C11-C10-H10B$ 110.4	O5—P1—C7		104.94 (6)	F4	С8—С7	113.	15 (11)
O2-S1-N1 108.97 (6) $F3-C9-F2$ 106.91 (12) $O1-S1-N1$ 105.06 (6) $F1-C9-F2$ 107.63 (12) $O2-S1-C1$ 108.97 (6) $F3-C9-C7$ 111.92 (11) $O1-S1-C1$ 106.92 (6) $F1-C9-C7$ 112.07 (12) $N1-S1-C1$ 105.30 (5) $F2-C9-C7$ 110.20 (10) $C7-N1-S1$ 130.95 (8) $O4-C10-C11$ 106.50 (16) $C7-N1-H1A$ 114.5 $O4-C10-H10A$ 110.4 $S1-N1-H1A$ 114.5 $C11-C10-H10A$ 110.4	02—S1—O1		120.58 (6)	F3—	C9—F1	107.	88 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—S1—N1		108.97 (6)	F3—	C9—F2	106.	91 (12)
O2—S1—C1 108.97 (6) F3—C9—C7 111.92 (11) O1—S1—C1 106.92 (6) F1—C9—C7 112.07 (12) N1—S1—C1 105.30 (5) F2—C9—C7 110.20 (10) C7—N1—S1 130.95 (8) O4—C10—C11 106.50 (16) C7—N1—H1A 114.5 O4—C10—H10A 110.4 S1—N1—H1A 114.5 C11—C10—H10A 110.4 C6—C1—C2 121.60 (11) O4—C10—H10B 110.4	01—S1—N1		105.06 (6)	F1—	C9—F2	107.	63 (12)
O1—S1—C1 106.92 (6) F1—C9—C7 112.07 (12) N1—S1—C1 105.30 (5) F2—C9—C7 110.20 (10) C7—N1—S1 130.95 (8) O4—C10—C11 106.50 (16) C7—N1—H1A 114.5 O4—C10—H10A 110.4 S1—N1—H1A 114.5 C11—C10—H10A 110.4 C6—C1—C2 121.60 (11) O4—C10—H10B 110.4	O2—S1—C1		108.97 (6)	F3—	С9—С7	111.	92 (11)
N1—S1—C1 105.30 (5) F2—C9—C7 110.20 (10) C7—N1—S1 130.95 (8) O4—C10—C11 106.50 (16) C7—N1—H1A 114.5 O4—C10—H10A 110.4 S1—N1—H1A 114.5 C11—C10—H10A 110.4 C6—C1—C2 121.60 (11) O4—C10—H10B 110.4	01—S1—C1		106.92 (6)	F1—	С9—С7	112.	07 (12)
C7-N1-S1 130.95 (8) O4-C10-C11 106.50 (16) C7-N1-H1A 114.5 O4-C10-H10A 110.4 S1-N1-H1A 114.5 C11-C10-H10A 110.4 C6-C1-C2 121.60 (11) O4-C10-H10B 110.4	N1—S1—C1		105.30 (5)	F2—	С9—С7	110.	20 (10)
C7-N1-H1A114.5O4-C10-H10A110.4S1-N1-H1A114.5C11-C10-H10A110.4C6-C1-C2121.60 (11)O4-C10-H10B110.4	C7—N1—S1		130.95 (8)	O4—	-C10C11	106.	50 (16)
S1N1H1A 114.5 C11C10H10A 110.4 C6C1C2 121.60 (11) O4C10H10B 110.4	C7—N1—H1	A	114.5	O4—	C10—H10A	110.	4
C6-C1-C2 121.60 (11) O4-C10-H10B 110.4	S1—N1—H1A	A	114.5	C11–	C10H10A	110.	4
	C6—C1—C2		121.60 (11)	04—	-C10H10B	110.	4

C6—C1—S1	120.05 (9)	C11—C10—H10B	110.4
C2—C1—S1	118.34 (10)	H10A—C10—H10B	108.6
C3—C2—C1	118.67 (12)	C10-C11-H11A	109.5
C3—C2—H2A	120.7	C10-C11-H11B	109.5
C1—C2—H2A	120.7	H11A—C11—H11B	109.5
C2—C3—C4	120.41 (13)	C10-C11-H11C	109.5
С2—С3—НЗА	119.8	H11A—C11—H11C	109.5
С4—С3—НЗА	119.8	H11B-C11-H11C	109.5
C3—C4—C5	120.51 (13)	O5-C12-C13	110.09 (13)
C3—C4—H4A	119.7	O5-C12-H12A	109.6
C5—C4—H4A	119.7	C13—C12—H12A	109.6
C4—C5—C6	119.89 (13)	O5-C12-H12B	109.6
C4—C5—H5A	120.1	C13—C12—H12B	109.6
С6—С5—Н5А	120.1	H12A—C12—H12B	108.2
C1—C6—C5	118.90 (12)	С12—С13—Н13А	109.5
С1—С6—Н6А	120.5	C12-C13-H13B	109.5
С5—С6—Н6А	120.5	H13A—C13—H13B	109.5
N1—C7—C9	109.28 (11)	С12—С13—Н13С	109.5
N1—C7—C8	114.70 (10)	H13A—C13—H13C	109.5
С9—С7—С8	109.24 (10)	H13B—C13—H13C	109.5
N1—C7—P1	103.16 (8)	C10—O4—P1	123.57 (10)
C9—C7—P1	110.27 (9)	C12—O5—P1	122.10 (9)
C8—C7—P1	110.04 (9)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1A···O3	0.88	2.34	2.8730 (14)	119
N1—H1A···O3 ⁱ	0.88	2.00	2.8324 (14)	158
Symmetry codes: (i) $-x+1, -y, -z$.				

Fig. 1

